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It is assumed that the Higgs particle distorts space-time in its own neighborhood 
and generates a self-referential nonlinear field. Its almost flat space-time metric 
form gives a nonlinear equation of motion admitting soliton-like solutions. This 
in turn gives rise to a new type of wave--space-time ("mass-transmit- 
ting") interactions allowing particles to acquire mass. The curvature of the 
(pseudo-) Riemannian manifold of a Higgs space-time yields the mass formula 
m~. z = f d3x ~/det GRn(x) = i 2 = 2m n or mR 182 GeV. 

Recently, the properties of space-time at short distances and of the 
physical vacuum including the gravitational field (or zero-point radiation 
field) and fluctuations and instabilities in them have attracted great interest. 
Concepts relating to the metastable and false vacuum and the gravitational 
field (Turner and Wilczek, 1982; Guth, 1981; Linde, 1982; Kirzhnits and 
Linde, 1972), the properties of the vacuum as a physical medium (Lee, 1981), 
and fluctuations in space-time (Takano, 1961a,b; 1967) (for example, see 
Vigier, 1982; Namsrai, 1986) and in the Yang-Mills vacuum (Migdal, 1981) 
have aided in understanding very important physical problems such as phase 
transitions of unified theories, the very early evolution of the universe as 
described by the inflationary model, which can solve the monopole, horizon, 
and flatness problems of the standard hot big-bang cosmology, quark confine- 
ment, and so on. For the electromagnetic vacuum case, zero-point fluctuational 
interactions are treated on the basis that charged point-mass particles interact 
with a background of random classical electromagnetic zero-point radiation 
with definite energy spectrum. This approach is called stochastic electrody- 
namics (SED) (Braffort and Tzara, 1954; Braffort et  al., 1965; Marshall, 1965; 
Boyer, 1975a; Puthoff, 1987). SED yields precise quantitative agreement with 
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the full QED treatment of such topics as Casimir (Lifshitz, 1955, 1956; 
Marshall, 1965; Boyer, 1975a) and van der Waals forces (Boyer, 1972a,b, 
1973, 1975a,b), topics directly related to gravity as a zero-point-fluctuation 
force (Puthoff, 1989). 

It seems that a universal background or radiation field, by analogy with 
SED, initially arose from processes in the early universe (the big bang) acting 
on physical objects everywhere; in particular, its different form of interaction 
with a matter field can be used to quantize physical systems (Parisi and Wu, 
1981) and study Green functions of particles (Dineykhan et al., 1991). In 
this connection, it should be noted that it makes no sense to say that empty 
space-time fluctuates or is quantized. On the contrary, physical space-time 
is not utterly empty: it has visible and invisible (dark) matter as background. 
Roughly speaking, physical space-time consists of empty space-time and 
backgrounds. In metric language this means that xl~ ---> Gr = r{~ + %.(x), 
where xl.. is the Minkowski metric of empty space-time and %,(x) is some 
background or radiation field (medium). Our approach follows in this direction 
and is devoted to connecting the background field %.(x) with properties of 
the Higgs particle, and to calculating its mass. It is well known that the 
beautiful unified theory of weak and electromagnetic forces (Weinberg, 1967; 
Salam, 1969; Glashow et al., 1970) needs the Higgs mechanism for the gauge 
bosons to acquire mass. It seems that the Higgs particle has only mass, and 
no other characteristics, and it distinguishes particles from empty space. In 
order to give particles mass, a background field is invented which becomes 
locally distorted whenever a particle moves through it. The distortion--the 
clustering of the field around the particle--generates the particle's mass. 
Even if all interactions are switched off, including gravitation, its field still 
exists everywhere as vacuum background (viscous fluid) and fills the universe. 

Thus, the Higgs particle is characterized by its mass and wave function. 
A question arises: How, through these quantities, can one construct a locally 
distorted space (background field) by which moving (interacting) particles 
gain mass? We assume that this distorted structure is given by the following 
simple perturbation form: 

Gr = TI~(I - e(x)) 

E(X) ----- ~- mHd l ~/(X, t) I 2 

(1) 

where ~ is the normalization constant, d is the dimension of space, and m.  
and O(x, t) are the mass and wave function of the Higgs particle, respectively. 
We use units such that h -- c -- 1. 

Assumption (l) implies that far from the "location" of the Higgs particle, 
space-time is almost flat, while in its neighborhood it is slightly distorted. 
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For example, it looks like the form shown in Fig. 1. In this paper we study 
some consequences of (1). 

Let us consider the case of one spatial dimension (d = 1, ~ = 1). Let 
the Higgs particle move in its self-referential field (1). Then, assuming that 
the field (1) is static, one gets (Landau and Lifshitz, 1951) 

mn ~ (2) 
E -  ~/1 - v2/c z 

for the Higgs particle energy. From (2) it is easy to construct the nonrelativistic 
Schr/Sdinger equation 

where 

a ~  _ 1 d 2 
i at 2rnn dx  2 t~ + Un(x)d~ (3) 

UH(X) = mH(--~-Z-~ -- 1) ~ --1311~12 - -  1 3 2 1 1 1 / ]  4 . . . .  (4) 

is the Higgs potential, 131 = �89 132 = {ran t. We see that equation (3) is 
essentially nonlinear. With the first term in (4), equation (3) is completely 
integrable and its solutions are solitons (Makhantov, 1990): 

t[Jt-t = A exp{i[(l + �89 + (x - vt) + 00]} 

• cosh-I[A(mn130U2(x - v t -  Xo)] (5) 

with the normalization constant A = I t_  o xuz = ~t t_  ~u2 ~-t"'nV'~) 7t~" 'm . Thus, in the 
stationary case the normalized metric (1) is 

G0o = - 1 + {cosh-2(xa) 

I Gij = gij[ 1 - {cosh-2(xa)], a = 7mn (6) 

With the metric form (6) the Higgs potential (4) acquires the enormously 
deep well 

On(x) = mn(Itanh(ax) l - 1) (7) 

with the depth U~ = --ran. This potential in turn gives rise to bound states 
[say, a particle with mass M in the Higgs field (1)] described by the stationary 
Schr/Sdinger equation 

2M dx z - M -  E + ~ ~ Un(x) ~ M = 0  (8) 
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Fig. 1. The structure of space-time in the neighborhood of the Higgs boson, determined 

by the metric forms (a) G0o(X) and (b) Git(x) in accordance with (17). 
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Its approx imate  fo rm 

2M dx 2 ~M - E + M cosh-2(xa)  ~M = 0 (9) 

gives the energy  levels 

_ rn~ 1 + 8 - + n ( 1 0 )  
E,~..M 32M m--~H] 

The  number  o f  discrete levels is equal  to the largest  integer sat isfying the 
inequality 2 

N < �89 + 8M2mFt 2 - �89 

For two Higgs  particles the discrete energy  levels are 

= _t__ m•{�89 + 16 - (n + �89 = - ~ m n R  (11) EnmHmH 32 

where  R = 2.25 for  n = 0 and R = 0.25 for n = 1. This  means  that the 
Higgs  particles are coupled  together  with a sufficiently large " force"  --mH/14. 

Now we genera l ize  the above  considerat ions to the relativistic and four- 
d imensional  space- t ime cases.  The  metric  fo rm (1) and equat ion (2) give the 
nonlinear  K l e i n - G o r d o n  equat ion 

(rn - -  m2)t~ + 131q/12~ = 0 (12) 

where  

O 2 0 2 
rn - + - -  13 = Bm~ l (13) 

Ot 2 3x 2 , 

It turns out that equat ion (12) admits  the exact  solution 

~(x,  t) = e x p { - i [ t o t  - px  + 00]} c( l  + hx2) - I  (14) 

when 

tO = x / m  2 + p2, tot -- px  = o'iUi = 0 (15) 

where  

C = (8h/13) |12, X 2 = r 2 - -  x 2 

2particles with mass  M < mHIv/8 do not form bound states with Higgs bosons. All observable 
particles, except for gauge bosons,  have mass  less than - 10 GeV and therefore they cannot 
acquire mass  due to the scheme (I). Quarks and leptons acquire mass  at the second-stage 
interaction mechan i sm (the Yukawa coupling to the Higgs bosons).  
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The last condition (15) means that the Higgs particle moves in a refractive 
medium with refractive index p > 1. In this case, the two four-vectors 

= , --  n (16a) 
W 

( c u } 
Ui = x / l  -- U2/C 2 '  X/I  U2/C 2 (16b) 

are orthogonal to each other, i.e., the phase of  the wave in (14) satisfies the 
condition (15) identically. Here tr i and U/are  the wave number and the ray 
velocity vectors, respectively. Indeed, if we assume u = dr /d t  is the three- 
ray velocity of  the Higgs particle, then the invariant phase F of  the wave 
(14) is 

o r  

(p) F = t o t - p r = E t - E  r 

P = v t - - - n r = O ,  E =  ~/p2 + m  2 
W 

v - n = 1 - -  - -  a n  = o'iSi 

Here tr" and U,- are defined by (16), where n denotes a unit three-vector 
in the direction of the wave normal, v is the frequency (to = E = by) ,  w = 
(p2 + m2)t/2/p is the phase velocity, u = ue, e is a unit three vector in the 
direction of  the ray, and u is the magnitude of  the ray velocity. In the rest 
system O'  o f  the refractive medium where e '  = n '  and w' = u'  = c/p, we have 

If } (~ ) ,  = v ' , _ o n ,  
C 

From this we immediately conclude that 

I~iUi = (o")iU~ = 0 

Furthermore, we are interested in the stationary metric form determined 
by the relation (14). The normalization condition 
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jI d3x I~(x, 0) 12 = 1 

and the requirement of  equality of  the metric G~v at the initial point x = 0 
of the coordinate system for cases of  one and three spatial dimensions give 
the unique choice of the parameters ~ and h in (14). Thus, expression (6) 
acquires the form (Fig. 1) 

I v 2 ~ 2  h - 2  G0o(X) = - 1  + 4(1 + ~ . . . .  HJ (17) 

I v 2 ~ 2  ~ - 2  G U = 1 - ~ ( 1  + ~  . . . .  m 

and the Higgs potential reads 

16 1 + x2m~t (18) 

Now we would like to answer the following question: what is the nature 
of the Higgs particle? We use the standard method. We know that the form 
of the potential (say, the Coulomb or Yukawa law) is related to the force- 
transmitting quanta, the particle propagator [ l ip 2 for the photon, (p2 + m2) - i 

for the scalar particle with mass m], in the static limit by the Fourier transform. 
Thus, we assume that for a particle with mass Ix near the Higgs particle with 
potential (18) there is a "mass-transmitting" force between them and the 
propagator of  the "mass-transmitting" quanta can be defined as 

U ~ n ( r )  - (2,n.) 3 d3p exp ( i p r ) D H ( p  2) (19) 

where 

1 r / p2 \la 1 
DH(p2) : m'--~n exp L - - 8 t ~ )  J 

and (20) 
. .1/2 

\mn/ 

Furthermore, in accordance with standard quantum field theory methods, we 
can construct "mass-transmitting" quanta-- the  Higgs-particle Lagrangian, 
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the equation of motion, and its propagator (20) in the four-dimensional 
space-time: 

if LH = -~ d4x @H(x)K(n, m~)d~H(x ) (21) 

K(n, rn~)dpt.t(x ) = 0 

where 

/' p2 \ in-  I 
= exp[-8t- ) j 

p2 = p~ _ p2 

r / o  "2-i 
= ex [8t- ) j 

is the square-root nonlocal pseudodifferential operator, the action of which 
is given by the Fourier transform. A representation acts on a function 
�9 (x, t) as follows: 

1/2 

K(U, m~)Cb(x) = my cosh 8 - <:I)(x) 

+m~(D) sinh[8( m~n)] 1 I I (23) - ~ d4y ~ (Y)  Ix - yl 

The kernel function in (23) has a singularity on the diagonal x = y and is a 
smooth function off the diagonal. The singularity on the diagonal is character- 
istic of pseudodifferential operators (Smith, 1993). Such a type of operator 
(23) appears in applications of the Bethe-Salpeter equation to bound states 
of quarks in the general problem of binding in very strong fields and also 
in string theory, and therefore Pauli's square-root operator is especially rele- 
vant to modern particle theory [for details see Smith (1993)]. 

We see that the "mass-transmitting" quantum, the Higgs particle, is 
essentially nonlocal and spreads out over the whole space; its propagator has 
no pole in momentum space. It is perhaps difficult to detect the Higgs particle. 
Thus, the assumption that the physical characteristic of the Higgs particle is 
its mass and that it is spread out over space, interacting with other particles 
to give them mass through the wave-space properties (1), is crucial in our 
approach. Above we have considered its wave properties and bound states; 
now we look at its space-time structure. We have seen that space-time in the 
neighborhood of Higgs particles is distorted in accordance with (1), (6), and 
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(17), and if other particles are near them, there is a force between them due 
to the curvature of the pseudo-Riemannian manifold. Let a scalar particle 
with mass M move in the Higgs space-time (1). Then, its Lagrangian function 
takes the form (Fulling, 1991) 

L,p = �89 - M2q~ 2 - E.~Rtr 2) (24) 

where V.q~ is the covariant derivative of q~, which reduces to the literal partial 
derivative of  ~p in our case. The Euler-Lagrange equation is 

where 

rnq0 + (M 2 + t~RH)q~ = 0 (25) 

where G tl = G 22 = G 33 and 

I . [ O G , j  OG,,k OGjk I 

= o ,  - -  OxJ o : 1  
+ -  

With the explicit form (17) all quantities are calculated in the standard way 
and the equality (27) is reduced to the mass formula 

/~z,w = [3M2n (28) 

1 ] rnq~ - 

Here we are not interested in a parameter ~ in (24) which arises from the 
conformal invariance [6 = (N - 2)/4(N - 1), in our case ~ = 1/6] and most 
likely concerns a renormalized wave function of  q~. From (25) we see that 
even a massless particle acquires a mass value 

2 
Macquir = (gH)averaged (26) 

in the Higgs field. Here averaging of  curvature is carried out over space. Let 
the initial mass of  a particle be zero and the field q~ be gauge boson. Then, 
by definition 

MZ'w = I d3x ,~'GRt-t(x) (27) 

where G = I det Gid(x)l in (17). The curvature scalar calculated by means 
of (17) is 

R = GikRi, 
( 0F3I 0F22 .jl_ 4 01~21 2 2  3 3 ) 

= G II 4 0 x  3 - 40x--- i- ~ - 2FIIFII - 2Fz2F22 - 2F33F33 
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where 

~ =--~ dyy2 1 + y2 

[(1 + l y 2 )  2 -  ~ ] - 3 n [ ~ +  (1 + l - ~ y j ~ - ~ y - -  l 2'~2[1 ~ ) ]  

Numerical calculations give m~ = 4Maz, w. Taking Mz = 91.17 GeV for the 
Z-boson, one gets 

mn = 182.5 GeV (29) 

Indirect bounds on the Higgs boson mass (ran < 250 GeV) have been obtained 
in Ellis et al. (1993). 

ACKNOWLEDGMENTS 

I am grateful to the Royal Society and Prof. T. W. B. Kibble for their 
hospitality at the Blackett Laboratory, to the Theoretical Physics Group of 
Imperial College for discussion, and to P. Ferreira and D. Brody for their 
help in preparation of the manuscript. I am also grateful to the Theory Division 
at CERN for support and hospitality, where this work was started. 

REFERENCES 

Boyer, T. H. (1972a). Physical Review A, 5, 1799. 
Boyer, T. H. (1972b). Physical Review A, 6, 314. 
Boyer, T. H. (1973). Physical Review A, 7, 1832. 
Boyer, T. H. (1975a). Physical Review D, 11,790. 
Boyer, T. H. (1975b). Physical Review A, 9, 2078. 
Boyer, T. H. (1975c). Physical Review A, 11, 1650. 
Braffort, P., and Tzara, C. (1954). Comptes Rendus de l'Academie des Sciences Paris, 239, 

1779-1780. 
Braffort, P., et al. (1965). Comptes Rendus de l'Academie des Sciences Paris, 261, 4339-4341. 
Dineykhan, M., Efimov, G. V., and Namsrai, Kh. ( 1991 ). Fortschritte der Physik, 39, 259-318. 
Ellis, J., Fogli, G. L., and Lisi, E. (1993). Physics Letters B, 318, 148-154. 
Fulling, S. A. (1991). Aspects of Quantum Field Theory of Curved Space-7~me, Cambridge 

University Press, Cambridge. 
Glashow, S. L., lliopoulos, J., and Maiani, L. (1970). Physical Review D, 2, 1285. 
Guth, A. H. (1981). Physical Review D, 23; 347-356. 
Kirzhnits, D. A., and Linde, A. D. (1972). Physics Letters B, 42, 471-474. 
Landau, L. D., and Lifshitz, E. (1951). The Classical Theory of Fields, Addison-Wesley, 

Reading, Massachusetts. 
Lee, T. D. ( 1981). In Statistical Mechanics of Quarks and Hadrons, H. Satz, ed., North-Holland, 

Amsterdam, pp. 3-15. 



Theoretical Estimate of the Higgs Boson Mass 1379 

Lifshitz, E. M. (1955). Zhurnal Eksperimental'noi i Teoreticheskoi Fizika, 29, 94 [Soviet 
Physics-JETP, 2, 73 (1956)]. 

Linde, A. D. (1982). Physics Letters, 108B, 389-393. 
Makhankov, V. C. (1990). Soliton Phenomenology, Kluwer, Dordrecht. 
Marshall, T. W. (1965a). Proceedings of the Cambridge Philosophical Society, 61, 537-546. 
Marshall, T. W. (1965b). Nuovo Cimento, 38, 206. 
Migdal, A. B. (1981). In Statistical Mechanics of Quarks and Hadrons, H. Satz, ed., North- 

Holland, Amsterdam, pp. 349-353. 
Namsrai, Kh. (1986). Nonlocal Q~antum Field Theory and Stochastic Quantum Mechanics, 

Reidel, Dordrecht. 
Parisi, G., and Wu, Y. S. (1981). Scientia Sinica, 24, 483. 
Puthoff, H. E. (1987). Physical Review D, 35, 3266. 
Puthoff, H. E. (1989). Physical Review A, 39, 2333-2341. 
Salam, A. (1969). In Elementary Particle Theory, N. Svartholm, ed., Almquist and Wicksells, 

Stockholm, p. 367. 
Smith, J. R. (1993). Second quantization of the square-root Klein-Gordon operator, microscopic 

causality, propagators, and interactions, Preprint UCD/11RPA 93-13, University of Califor- 
nia-Davis. 

Takano, Y. (1961a). Progress of Theoretical Physics, 26, 304-314. 
Takano, Y. (1961b). Progress of Theoretical Physics, 27, 212-213. 
Takano, Y. (1967). Progress of Theoretical Physics, 38, 1185-1187. 
Turner, M. S., and Wilczek, E (1982). Nature, 298, 633-634. 
Vigier, J. P. (1982). Astronomische Nachrichten, 303, 55-80. 
Weinberg, S. (1967). Physical Review Letters, 19, 1264. 


